

CEEn-2018CPST-009

Sewer System Consolidation

Team Invictus

John Jensen

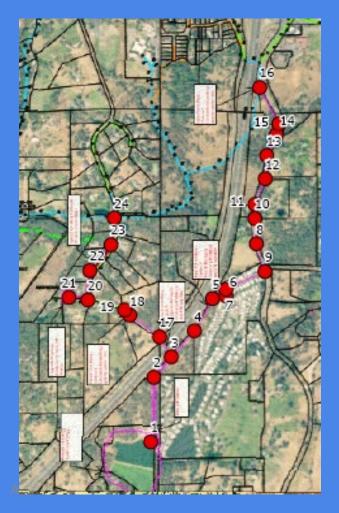
Jordan Kersey

Christian Lundskog

Camille Lunt

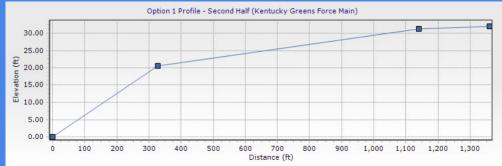
Introduction

- Project Tasks and Deliverables
- Design and Analysis
- Discussion of Results
- Conclusions
- Recommendations


Project Tasks and Deliverables

- Evaluate the following through calculations and WaterCAD analysis:
 - Multiple sewer force main pipe alignments
 - Multiple existing sewer lift station upgrades
 - Multiple new sewer lift station options
- Determine the most economical project through performing a cost analysis

Design and Analysis


ELEVATION DATA

Option 1 - Initial hill and under I-80

Option 1 - Kentucky Greens force main

Option 2 - Entire stretch

FLOW DATA

Kentucky Green Flow Data						
Pipe Size 6 Inches - 0.5 ft						
Area	0.196	ft²	Area	0.196	ft ²	
Minimum Velocity	2	ft/s	Minimum Velocity	6	ft/s	
	0.393	ft ³ /s		1.178	ft ³ /s	
Q(flow)	176	gpm	Q(flow)	529	gpm	
	253808	gpd		761424	gpd	

Pump Definitions						
- Design Flow (gpm) Design Head (ft)						
Option 1A - crest	157	81.6				
Option 1B - KG forcemain	167	81.7				
Option 2	157	224.2				

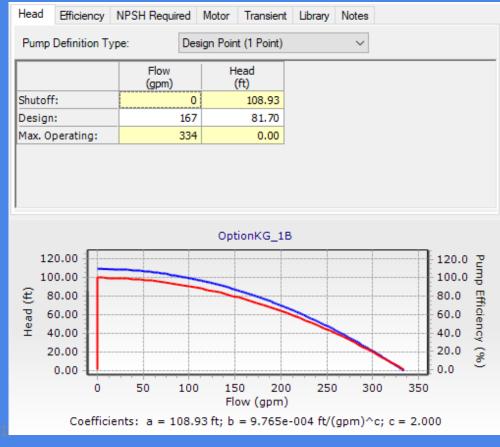
New Li	ft Stations	New Lift Stations			
Pipe Size	4	in	Dina Siza	4	in
Pipe Size	0.333	ft	Pipe Size	0.333	ft
Area	0.087	ft ²	Area	0.087	ft ²
Minimum Velocity	2	ft/s	Minimum Velocity	6	ft/s
	0.175	ft ³ /s		0.524	ft ³ /s
Q(flow)	78	gpm	Q(flow)	235	gpm
	112804	gpd		338411	gpd

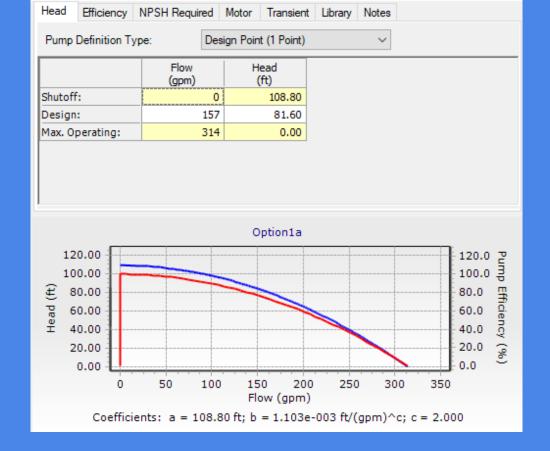
Kentucky Greens Assumptions for Flow					
Homes	14	-			
People Per Home	4	-			
Flow Per Person	200	gpd			
	11200	gpd			
Total Flow	7.78	gpm			
	* Rounded to 10 for low-ball error				

MODELING

Force main portions of Option 1

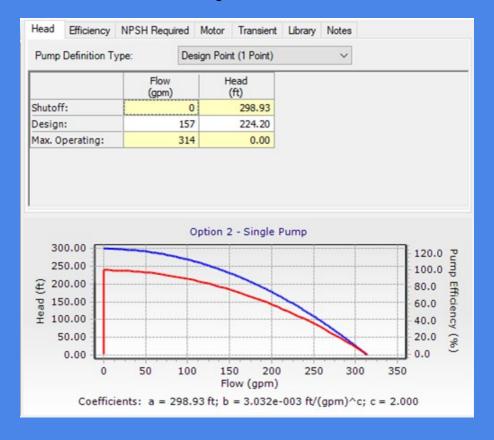
- Option 1A not feasible
- Option 1B a must


All of Option 2



MODELING cont'd

Option 1



MODELING cont'd

Option 2

IRA A. FULTON COLLEGE

Discussion of Results

WaterCAD modeling of Option 1

- Velocities between 3 and 4 ft/s
- Pressures between 1 and 7 psi

Label 🔺	Elevation (ft)	Pressure (psi)	Hydraulic Grade (ft)
J1.01	69.90	4	80.11
J1.02	20.60	7	37.25
J1.03	31.20	1	33.12

Label 🔺	Velocity (ft/s)	Flow (gpm)	Length (Scaled) (ft)	Start Node	Stop Node	Diameter (in)	Material	Hazen-Williams C
P1.01	3.55	139	865	PMP1A	31.01	4.0	PVC	150.0
P1.02	3.55	139	406	J1.01	T1A	4.0	PVC	150.0
P1.03	3.08	271	328	PMP1B	J1.02	6.0	PVC	150.0
P1.04	3.08	271	813	J1.02	31.03	6.0	PVC	150.0
P1.05	3.08	271	220	J1.03	T1B	6.0	PVC	150.0

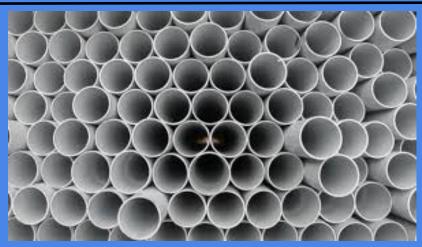
IRA A. FULTON COLLEGE

Discussion of Results Cont'd

WaterCAD modeling of Option 2

- Velocities at 4.15 ft/s
- Pressures between 15 and 60 psi

Label 🔺	Elevation (ft)	Pressure (psi)	Hydraulic Grade (ft)
J2.01	70.00	60	208.62
J2.02	75.00	52	194.71
J2.03	73.00	50	187.65
J2.04	51.40	58	184.69
J2.05	51.10	57	183.26
J2.06	49.70	54	174.61
J2.07	57.50	48	167.33
J2.08	72.20	38	159.61
J2.09	94.90	25	153.11
J2.10	107.00	18	148.47
J2.11	107.50	16	143.65
J2.12	106.00	15	140.88


Label 🔺	Velocity (ft/s)	Flow (gpm)	Length (Scaled) (ft)	Start Node	Stop Node	Diameter (in)	Material	Hazen-Williams C
P2.01	4.15	162	865	PMP2	J2.01	4.0	PVC	150.0
P2.02	4.15	162	983	J2.01	J2.02	4.0	PVC	150.0
P2.03	4.15	162	500	J2.02	J2.03	4.0	PVC	150.0
P2.04	4.15	162	209	J2.03	J2.04	4.0	PVC	150.0
P2.05	4.15	162	101	32.04	J2.05	4.0	PVC	150.0
P2.06	4.15	162	612	J2.05	J2.06	4.0	PVC	150.0
P2.07	4.15	162	514	J2.06	J2.07	4.0	PVC	150.0
P2.08	4.15	162	546	J2.07	J2.08	4.0	PVC	150.0
P2.09	4.15	162	460	J2.08	32.09	4.0	PVC	150.0
P2.10	4.15	162	327	J2.09	J2.10	4.0	PVC	150.0
P2.11	4.15	162	341	J2.10	J2.11	4.0	PVC	150.0
P2.12	4.15	162	196	J2.11	J2.12	4.0	PVC	150.0
P2.13	4.15	162	628	J2.12	T2	4.0	PVC	150.0

pril 12, 2019 10

COST ANALYSIS

- Preliminary report
- Estimates are conservative
- Based on provided examples
- Rates from recent cost trends

OPTION 1 - Opinion of Probable Cost

No.	Item	Quantity	Unit	Unit Cost Cos			Cost
1	Mobilization / Demobilization	10%	LS	\$	-	\$	108,000.00
2	Sheeting, Shoring, and Bracing	5%	LS	\$	-	\$	52,000.00
3	SWPPP and Erosion Control	1	LS	\$ 5,0	00.00	\$	5,000.00
4	Excavation	1	LS	\$ 5,0	00.00	\$	5,000.00
5	Dewatering	1	LS	\$ 5,0	00.00	\$	5,000.00
6	Pre-Cast Concrete Wet Well (6-ft dia x 8-ft depth)	1	LS	\$ 15,0	00.00	\$	15,000.00
7	Wet Well Lid and Access Hatch with Safety Grate	3	EA	\$ 8,0	00.00	\$	24,000.00
8	Lift Station Valve Vault (6-ft L, 4-ft W, 6-ft D)	1	LS	\$ 15,0	00.00	\$	15,000.00
9	Reinforced Concrete Footings / Equipment Slabs	10	CY	\$ 1,0	00.00	\$	10,000.00
10	Yard Piping	1	LS	\$ 10,0	00.00	\$	10,000.00
11	Sewer Pumps, Motors, and Accessories	4	EA	\$ 30,0	00.00	\$	120,000.00
12	Pump Station Valves	20	EA	\$ 2,0	00.00	\$	40,000.00
13	Inlet and Outlet Manholes	23	EA	\$ 2,4	00.00	\$	55,000.00
14	PVC SDR Pipe 4-in dia (includes installation and backfill)	2200	LF	\$	40.00	\$	88,000.00
15	PVC SDR Pipe 6-in dia (includes installation and backfill)	2000	LF	\$	50.00	\$	100,000.00
16	Bore and Jack under I-80	200	LF	\$ 1,5	00.00	\$	300,000.00
17	Site Improvements (fencing/wall, gate, pavement pad, shade cover, etc.)	1	LS	\$ 60,0	00.00	\$	60,000.00
18	Generator and Automatic Transfer Switch	1	LS	\$ 50,0	00.00	\$	50,000.00
19	Site Electrical, Controls, Instrumentation, and SCADA	1	LS	\$ 120,0	00.00	\$	120,000.00
	SLIP TOTAL ESTIMATED COST - \$ 1.192.000.00						

SUB-TOTAL ESTIMATED COST = \$ 1,182,000.00

15% FINAL CONTINGENCY = \$ 177,000.00

\$ 1,400,000.00

OPTION 2 - Opinion of Probable Cost

No.	ltem	Quantity	Unit	Unit Cost			Cost
1	Mobilization / Demobilization	10%	LS	\$	-	\$	79,000.00
2	Sheeting, Shoring, and Bracing	5%	LS	\$	-	\$	38,000.00
3	SWPPP and Erosion Control	1	LS	\$	5,000.00	\$	5,000.00
4	Excavation	1	LS	\$	5,000.00	\$	5,000.00
5	Dewatering	1	LS	\$	5,000.00	\$	5,000.00
6	Pre-Cast Concrete Wet Well (6-ft dia x 8-ft depth)	1	LS	\$	15,000.00	\$	15,000.00
7	Wet Well Lid and Access Hatch with Safety Grate	3	EA	\$	8,000.00	\$	24,000.00
8	Lift Station Valve Vault (6-ft L, 4-ft W, 6-ft D)	1	LS	\$	15,000.00	\$	15,000.00
9	Reinforced Concrete Footings / Equipment Slabs	10	CY	\$	1,000.00	\$	10,000.00
10	Yard Piping	1	LS	\$	10,000.00	\$	10,000.00
11	Sewer Pumps, Motors, and Accessories	2	EA	\$	30,000.00	\$	60,000.00
12	Pump Station Valves	20	EA	\$	2,000.00	\$	40,000.00
13	Inlet and Outlet Manholes	32	EA	\$	2,400.00	\$	77,000.00
14	PVC SDR Pipe 4-in dia (includes installation and backfill)	6300	LF	\$	40.00	\$	252,000.00
15	Site Improvements (fencing/wall, gate, pavement pad, shade cover, etc.)	1	LS	\$	60,000.00	\$	60,000.00
16	Generator and Automatic Transfer Switch	1	LS	\$	50,000.00	\$	50,000.00
17	Site Electrical, Controls, Instrumentation, and SCADA	1	LS	\$	120,000.00	\$	120,000.00
						_	255 222 22

SUB-TOTAL ESTIMATED COST = \$ 865,000.00

15% FINAL CONTINGENCY = \$ 130,000.00

\$ 1,000,000.00

Discussion of Results Cont'd

Option	Sub-total Estimated Cost	Contingency (15%)	Total Cost		
1	\$ 1,182,000.00	\$ 177,000.00	\$ 1,359,000.00		
2	\$ 865,000.00	\$ 130,000.00	\$ 995,000.00		

- Boring under I-80 is the single greatest cost at an estimated \$300,000
- The cost of extra pipe for Option 2 (\$64,000) is nearly offset by the cost of additional pumps from Option 1 (\$60,000)

Conclusions

- Both models would have velocities and pressures that are within SPMUD specifications
- The project would likely cost \$1.0 1.4 million
- Option 1 would require the pump servicing the Kentucky Greens Lift
 Station to be upgraded
- Option 2 would need 1.5 times more pipe than Option 1

Recommendations

- Implement Option 2
- Perform an inflow and infiltration (I&I) study
- Record and/or obtain updated flow data
 - From the mobile home park
 - For existing city lines

The End

Any Questions?