Orem City Small Roundabouts Feasibility and Design

Final Report

Prepared By:
Christopher K. Haskell, EIT
Zane Pulver

Student Mentor:
Daniel Jean, EIT

Faculty Advisor:
Dr. Mitsuru Saito, PhD, PE, F.ASCE, F.ITE

Prepared for:
Senior Design Project
Civil and Environmental Engineering
Brigham Young University

14 April 2015

TABLE OF CONTENTS

Introduction 1
Project Scope 3
Intersection Descriptions 3
Site A: 2000 North and 800 West 4
Site B: 1000 North and 800 West 6
Site C: 400 South and 800 West 9
Operational Analysis 11
Traffic Observations 11
Growth Factors 12
Level of Service 12
Demand versus Capacity 12
Physical Analysis 15
Current Dimensions 15
Roundabout Demands 17
Roundabout Designs 19
Pedestrian Interaction 24
Crash Rates 24
Cost 25
Recommendations 26
Works Cited i
Appendix A: Turning Movements ii
Appendix B: Synchro Analysis xi
Appendix C: Demands and Capacity xxviii

Table of Figures

Figure 1: Vicinity Map of Sites A, B, and C 3
Figure 2: Aerial View of Site A 4
Figure 3: Street view of Site A 5
Figure 4: Street view of Site A 5
Figure 5: Street view of Site A 6
Figure 6: Aerial View of Site B 7
Figure 7: Street view of Site B. 7
Figure 8: Street view of Site B 8
Figure 9: Street view of Site B 8
Figure 10: Aerial View of Site C 9
Figure 11: Street view of Site C. 10
Figure 12: Street view of Site C 10
Figure 13: Street view of Site C. 11
Figure 14 Example Measurement of Cross Distances 16
Figure 15: Site A proposed design and current design 20
Figure 16: Site B proposed design and current design 22
Figure 17: Site C proposed design and current design 24

Table of Tables

Table 1 Table of measured cross diameters 17
Table 2: Standard diameter ranges for roundabout configurations. 18
Table 3: Site A design dimensions. 19
Table 4: Site A design dimensions. 20
Table 5: Site B design dimensions 21
Table 6: Site B design dimensions 21
Table 7: Site C design dimensions. 23
Table 8: Site C design dimensions 23
Table 9 Cost Estimation for Studied Intersections 25

Table of Equations

Equation 1: Heavy-vehicle adjustment factor 13
Equation 2: Flow Rate for Peak 15-minute period 14
Equation 3: Entry flow rates 14
Equation 4: Circulating flow rates 14
Equation 5: Exiting flow rates 15
Equation 6: Entry capacity 15

General Information

Project Sponsor

Taylor Forbush, P.E.
Email: tforbush@orem.org
Available Monday - Friday, 8-5pm

Keith Larsen, P.E.
Email: klarsen@orem.org
Available Monday - Friday, 8-5 pm

Mentor

Daniel Jean, E.I.T. Graduate Research Assistant
Email: danykat08@gmail.com

INTRODUCTION

The city of Orem is a growing community; the population has grown by more than 4,000 people over the last ten years making it the fifth largest city in Utah and houses the largest university in the state. Orem City encompasses an area of 18.3 square miles and contains a population of 90,749 as of the 2012 census. Thus the density of Orem consists of 4,826 people per square mile. Orem City is classified as an urbanized community according to the standards established by the American Association of State Highway and Transportation Officials (AASHTO).

The purpose of the Small Roundabouts and Feasibility Design project is to evaluate the feasibility of connecting roundabouts of three all-way stop intersections along the 800 West corridors in Orem, UT.

The city's goals from this project are:

- To reduce traffic delay
- To improve safety for pedestrians and bicyclists
- To assist in traffic flow
- To improve air quality by reducing unnecessary stops

Using the Federal Highway Administration's (FHWA) publication titled Roundabouts: An Informational Guide as a resource, the two types of roundabouts that will most likely be considered for the feasibility study is mini-roundabouts and urban compact roundabouts (FHWA 2010). The mini and single lane roundabouts are used for classified vehicles of SU-30 up to

WB-67. Along with the counts, an estimation of truck counts will be taken into account to specify the design vehicles for each potential roundabout.

It is first necessary to determine if roundabouts are feasible at each of the given intersections. This will be done through various means to determine if a roundabout can or should be constructed at these locations. Collection of traffic data is the first necessary action to consider in determining the feasibility of each roundabout. The traffic data collected will be used to analyze the level of service of planned roundabouts along with a demand versus capacity analysis for roundabout feasibility from a traffic operations standpoint.

Following the modeling and simulations of traffic for proposed roundabouts, the physical dimensions of each location will be observed. This will be conducted to determine if roundabouts will fit with the current land used by the city for the current intersections. If roundabouts are not practical for each location then a determination of land acquisitions will be conducted. In addition, roundabout sizes will be determined for each specific site along with the roundabout dimensions.

To be noted, during the process of the project it was informed that one of the sites will be taken off the project. Officials of Orem City informed the project team that Site D: 800 South and 800 West will be considered for another project and will no longer be a part of this project's scope.

PROJECT SCOPE

Intersection Descriptions

The project team visited each of the sites within the project to gain further understanding of the needs of each site. Sites A, B, and C are located on 800 West in Orem, UT. Figure 1 provides a vicinity map of the three sites.

Figure 1: Vicinity Map of Sites A, B, and C

Site A: 2000 North and 800 West
Site A is located at 2000 North and 800 West of Orem, UT. Site A is on the northern border of Orem City and Lindon City. The site consists of a four way stop and contains one lane per direction. The site contains both urban collector streets and urban local streets. In addition, marked crosswalks are provided. Figure 2 provides an aerial view of the site. Figure 3, Figure 4, and Figure 5 provides streets views of Site A.

Figure 2: Aerial View of Site A

Figure 3: Street view of Site A

Figure 4: Street view of Site A

Figure 5: Street view of Site A

Site B: 1000 North and 800 West
Site B is located at 1000 North and 800 West in Orem, UT in a residential area of the city with Timpanogos Hospital located to the South East of the site. The site contains both urban collector streets and urban local streets. Site B is a four way stop intersection. Figure 6 provides an aerial view of the site. In addition, Figure 7, Figure 8, and Figure 9 provide street views of the site.

Figure 6: Aerial View of Site B

Figure 7: Street view of Site B

Figure 8: Street view of Site B

Figure 9: Street view of Site B

Site C: 400 South and 800 West
Site C is located at 400 South and 800 West in Orem, UT in a residential area about 0.6 miles from Utah Valley University (UVU). This site consists of urban collector streets and contains two stop directions for north and south bound. Figure 10 provides an aerial view of the site. Figure 11, Figure 12, and Figure 13 provide street views of Site C.

Figure 10: Aerial View of Site C

Figure 11: Street view of Site C

Figure 12: Street view of Site C

Figure 13: Street view of Site C

Operational Analysis

Traffic Observations

Traffic observations were necessary in determining the feasibility of roundabouts at the three sites. Traffic data was collected by the project team at all three sites during typical peak hours throughout the day. The counts were recorded from 7:00 AM to 9:30 AM, 11:30 AM to 1:00 PM, and 4:30 PM to 6:00 PM. Traffic studies were conducted mid-week to determine the typical turning movements at each site. The traffic studies were conducted using Jamar Dashboards provided by the Civil and Environmental Engineering Department at Brigham Young University (BYU). Project team members conducted the traffic observations on January
$15^{\text {th }}$ and January $20^{\text {th }}$ of 2015. It was observed that the Peak Hour Volumes for Site A, Site B, and Site C were 578,556 , and 953 , respectively. The longest queue for the current sites was no more than five passenger vehicles. Details of the traffic data can be found in Appendix A: Turning Movements of the report. In addition, it was observed that the design vehicle for each site was a B-40.

Growth Factors

With the three intersections being considered are in well-established residential areas, a growth factor of 1% was considered. This was determined by viewing the current land use near the sites. Each site is located in a residential area but is located near major areas such as schools and hospitals. The growth factor was left to the judgment of the design team and can be changed upon request or from data that would suggest a different growth factor.

Level of Service

The current level of service (LOS) is a level A at all intersections. The LOS was determined using Synchro models created with a growth factor of 1% and with a truck percentage of 5\%. The LOS was also found after inserting a roundabout in Synchro and the results revealed no change in the level of service for the current conditions. A Synchro analysis was also performed using project volumes at 20 years. The LOS A remained for each site. All the results from the Synchro analysis can be found in Appendix B: Synchro Analysis. Further sensitivity analysis was performed to give greater detail into the Synchro analysis in the form of a Demand versus Capacity analysis which can be found in the following section.

Demand versus Capacity

In addition to the LOS for each of the sites, a demand versus capacity analysis was necessary to determine if small roundabouts would be feasible at each of the locations. This was done using a method performed by the National Cooperative Highway Research Program (NCHRP) and is represented in Report 672 Roundabouts: An Informational Guide. Each site was analyzed using this method and is outlined in this report.

The first step was to determine the demands upon the intersection for both current and projected volumes. The process between the current and projected demands were the same except projected volumes where increased to match a 20 year projected life of the intersection. The demands were determined using the turning movement counts collected by the capstone team earlier in the project and outlined in a prior subtopic of the report. Peak Hour Volumes were then established for each leg of the intersections in question. In addition, a 1% of heavy vehicles were estimated at each of the intersections. A heavy-vehicle adjustment factor was then determined. Equation 1 was used to determine the heavy-vehicle adjustment factor for each site (Fricker \& Whitford, 2004):

Equation 1: Heavy-vehicle adjustment factor

$$
f_{H V}=\frac{1}{1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)}
$$

After the heavy-vehicle adjustment factor was established for each site it was then used to determine the passenger car equivalent flow rate for peak 15-minute period. Equation 2 was used in determining the flow rate for each leg of each intersection (Fricker \& Whitford, 2004).

Equation 2: Flow Rate for Peak 15-minute period

$$
v_{p}=\frac{V}{P H F * f_{G} * f_{H V}}
$$

The demands where then established by calculating the sum of the movement flow rates that enter the roundabout. For the single lane roundabouts, all approach volumes were summed together. Equation 3 was used to determine the entry flow rates for the south leg and a similar process for the other legs (NCHRP, 2010):

$$
\begin{gathered}
\text { Equation 3: Entry flow rates } \\
v_{e, N B, p c e}=v_{N B U, p c e}+v_{N B L, p c e}+v_{N B T, p c e}+v_{N B R, p c e}
\end{gathered}
$$

The circulating flow was then calculated for each leg. The circulating volumes are the sum of all that will conflict with entering vehicles on the subject approach. Equation 4 provides the circulating flow for the south leg and a similar process for the other legs (NCHRP, 2010):

$$
\begin{gathered}
\text { Equation 4: Circulating flow rates } \\
v_{c, N B, p c e}=v_{W B U, p c e}+v_{S B L, p c e}+v_{S B U, p c e}+v_{E B T, p c e}+v_{E B L, p c e}+v_{E B U, p c e}
\end{gathered}
$$

The exiting flow was then calculated for each leg by summing all flow that exited the roundabout for a particular leg. The exiting volume was then calculated for the south leg and a similar process for the other legs using Equation 5 (NCHRP, 2010):

$$
\begin{gathered}
\text { Equation 5: Exiting flow rates } \\
v_{e x, p c e, N B}=v_{N B U, p c e}+v_{W B L, p c e}+v_{S B T, p c e}+v_{E B R, e, p c e}
\end{gathered}
$$

Once the demands were established for each site, the capacity of a single lane roundabout was determined for Site A, Site B, and Site C. The capacity of the entry lanes opposed to the circulating lanes is based on the conflicting flow. Equation 6 was used to determine the capacity of each leg (NCHRP, 2010):

$$
\begin{gathered}
\text { Equation 6: Entry capacity } \\
c_{e, p c e}=1130 e^{\left(-1.0 \times 10^{-3}\right) v_{c, p c e}}
\end{gathered}
$$

Once the demands and capacities where determined, a volume-to-capacity ratio was established in order to determine the feasibility of a roundabout at each site. When a ratio value of 1 or greater is estimated then the roundabout is in a state of failure or continual failure. For each site, the ratio was well under 1 and thus each roundabout would perform very well whether at the current traffic or for the projected traffic. Additional details of the demands versus capacity can be found in Appendix C: Demands and Capacity.

Physical Analysis

Current Dimensions

The project team used parcel data downloaded from the Utah AGRC and imported that parcel data into ArcMap. The cross dimensions were then measured in ArcMap to determine the maximum diameter roundabout that could be inserted into each individual intersection. Figure 14 shows the process used to obtain the different widths at the various intersections.

The diameter of each intersection along with road widths was determined. Table 1 outlines the measured distances at each location.

Table 1 Table of measured cross diameters

	Direction		Width of Intersection			
Cross Street on 800 W	NE/SW	NW/SE	North Leg	South Leg	East Leg	West Leg
1000 N	122	137	52	62	36	34
2000 N	122	123	30	51	42	41
400 S	124	148	44	45	50	48

Roundabout Demands

Before designs were established for each site, it was necessary to determine the type of roundabout that would be useful and the necessary parameters. After speaking with Orem City representatives and observations of each site it was determined that a single-lane roundabout would be used for Site A, Site B, and Site C.

The first parameter that was needed for a single-lane roundabout would be the diameter of the roundabout circle. With a design vehicle of a B-40 and the roundabout type as a singlelane roundabout it was determined that the range of diameters that could be used was from 90 ft . to 150 ft . Table 2 provides standard diameter ranges from the different types of roundabouts (NCHRP, 2010):

Table 2: Standard diameter ranges for roundabout configurations

	Typical Design Vehicle	Common Inscribed Circle Diameter Range*	
Roundabout Configuration	SU-30 (SU-9)	45 to 90 ft	$(14$ to 27 m$)$
Mini-Roundabout	B-40 (B-12)	90 to 150 ft	$(27$ to 46 m$)$
Single-Lane Roundabout	WB-50 (WB-15)	105 to 150 ft	$(32$ to 46 m$)$
WB-67 (WB-20)	130 to 180 ft	$(40$ to 55 m$)$	
Multilane Roundabout (2 lanes)	WB-50 (WB-15)	150 to 220 ft	$(46$ to 67 m$)$
	WB-67 (WB-20)	165 to 220 ft	$(50$ to 67 m$)$
Multilane Roundabout (3 lanes)	WB-50 (WB-15)	200 to 250 ft	$(61$ to 76 m$)$

The second parameter that was determined for the single-lane roundabouts was the angle between approach legs. The current intersections maintain an angle of 90°. The same angle was used for the roundabout parameters for each of the sites.

The third parameter that was established for a single-lane roundabout was the size of the splitter islands. A standard length of 50 ft . to 100 ft . is used for a single-lane roundabout (NCHRP, 2010). The splitter width at the crosswalk should be a minimum of 6 ft . to provide adequate space for pedestrians, which include wheelchairs, pushing a stroller, or walking a bike (NCHRP, 2010). In addition the typical length of the section of splitter-island that is nearest the intersection should be 20 ft .

The fourth parameter for a single-lane roundabout is the lane's entry width. The typical entry width range is from 14 ft . to 18 ft . and care should be taken in creating widths greater than 18 ft . due to drivers' perception of a wide lane being multiple-lanes.

The fifth parameter is the circulating roadway width. It is custom that for a single-lane roundabout the circulating roadway width should be at least the width of the entry lane and
should be no more than 120% of the maximum entry width. It is encouraged to not exceed 120% of maximum entry width for the effect of a roundabout would be greatly reduced due to the size of lanes.

The sixth parameter is the central island. The central island diameter is determined based off of the remaining space available after the circulating lanes and apron have been established. It is also encouraged to use a raised island instead of a depressed island.

Roundabout Designs

Using the current parameters that are available for each site along with the parameters necessary for a single-lane roundabout the designs for each site was created. The goal of the capstone team was to reduce the amount of land that would be necessary in purchasing. After evaluating each site and possible roundabouts, one design for each intersection was created that resulted in no property purchase but would require utility lines relocated. Table 3 and Table 4 provide the design dimensions for Site A. In addition, Figure 15 provides a design of the current intersection versus the new roundabout designs. Each design ends at the edge of the curb and does not extend into the sidewalk.

Table 3: Site A design dimensions

Direction	Outer Diameter (ft)	Apron Width (ft)	Exit Road Width (ft)	Exit Radius (ft)	Exit Flare length (ft)	Width at departure (ft)	Entry Road width (ft)	Entry Radius (ft)	Entry Flare Length (ft)	Width at Approach (ft)
NB	90	12	15	50	100	20	14	50	100	20
EB	90	12	15	50	100	20	14	50	100	20
SB	90	12	15	50	100	10	14	50	100	10
WB	90	12	15	50	100	20	14	50	100	20

Table 4: Site A design dimensions

	Construction Triangle Length (ft)	Construction Triangle Base (ft)	Splitter Island Crosswalk Length (ft)	Splitter Island Total Length (ft)	Splitter Island Base Length (ft)
Direction	(ft)	(ft)	(ft)	(ft)	(ft)
NB	100	20	10	60	20
EB	100	20	10	60	20
SB	100	20	10	60	20
WB	100	20	10	60	20

Figure 15: Site A proposed design and current design

Table 5 and Table 6 provide the design dimensions for Site B. In addition, Figure 16 provides a design of the current intersection versus the new roundabout designs. Each design ends at the edge of the curb and does not extend into the sidewalk.

Table 5: Site B design dimensions

Direction	Outer Diameter (ft)	Apron Width (ft)	Exit Road Width (ft)	$\begin{gathered} \text { Exit } \\ \text { Radius } \\ \text { (ft) } \\ \hline \end{gathered}$	Exit Flare length (ft)	Width at departure (ft)	Entry Road width (ft)	Entry Radius (ft)	Entry Flare Length (ft)	Width at Approach (ft)
NB	90	12	15	50	100	17	14	50	100	17
EB	90	12	15	50	100	17	14	50	100	17
SB	90	12	15	50	100	17	14	50	100	17
WB	90	12	15	50	100	17	14	50	100	17

Table 6: Site B design dimensions

	Construction Triangle Length	Construction Triangle Base	Splitter Island Crosswalk Length	Splitter Island Total Length	Splitter Island Base Length
Direction	(ft)	(ft)	(ft)	(ft)	(ft)
NB	100	15	10	60	20
EB	100	15	10	60	20
SB	100	15	10	60	20
WB	100	15	10	60	20

Figure 16: Site B proposed design and current design

Table 7 and Table 8 provide the design dimensions for Site C. In addition, Figure 17 provides a design of the current intersection versus the new roundabout designs. Each design ends at the edge of the curb and does not extend into the sidewalk.

Table 7: Site C design dimensions

Direction	Outer Diameter (ft)	Apron Width (ft)	Exit Road Width (ft)	Exit Radius (ft)	Exit Flare length (ft)	Width at departure (ft)	Entry Road width (ft)	Entry Radius (ft)	Entry Flare Length (ft)	Width at Approach (ft)
NB	90	12	15	50	100	20	14	50	100	20
EB	90	12	15	50	100	20	14	50	100	20
SB	90	12	15	50	100	20	14	50	100	20
WB	90	12	15	50	100	20	14	50	100	20

Table 8: Site \mathbf{C} design dimensions

Direction	Construction Triangle Length (ft)	Construction Triangle Base (ft)	Splitter Island Crosswalk Length (ft)	Splitter Island Total Length (ft)	Splitter Island Base Length (ft)
NB	100	15	10	60	20
EB	100	15	10	60	20
SB	100	15	10	60	20
WB	100	15	10	60	20

Figure 17: Site \mathbf{C} proposed design and current design

In addition to the parameters outlined, a circulating road width was estimated to be 120% of the entry widths. The circulating widths were estimated to be 18 ft . It is discouraged to use a circulating width greater than 18 ft . due to driver perception.

Pedestrian Interaction

Crash Rates

Crash rates were requested by the project team but were not able to obtain them. The team acknowledges the importance in considering crash rates for projects of this type but were unable to perform the analysis due to lack of data. The design team encourages further investigation in regards to pedestrian interaction with roundabouts.

Cost

To finalize the designs of the roundabouts, a simple cost estimate was determined for each site. The cost estimate for replacing asphalt at each intersection is outlined in Table 9.

Table 9 Cost Estimation for Studied Intersections

Intersection	Square Footage	Asphalt Cost per ft 3" depth	Subbase Cost per ft 8" depth	Cost per Intersection				
800 W 400 S	$28,819.00$	1.40	0.89	$65,995.51$				
800 W 1000 N	$28,471.00$	1.40	0.89	$65,198.59$				
800 W 2000 N	$29,100.00$	1.40	0.89	$66,639.00$				
							Total Cost	$197,833.10$

The square footage was obtained by creating objects in Civil 3D and adding up all four legs of the intersection and finding the area of the roundabout itself. The square footage of the four legs and the roundabout were summed to obtain the total square footage of each individual intersection. Due to the circles involved in a roundabout, the estimated square footage is greater than the actual square footage required to build the new roundabouts. The cost of asphalt and sub base can also fluctuate and a more accurate estimate should be obtained from a contractor for exact cost.

RECOMMENDATIONS

Upon completing the small roundabouts feasibility study and design, the design team recommends the installation of roundabouts at each site. Specific considerations must be advised for each intersection.

At Site A, the design team recommends that a single lane roundabout be used in place of the current four way stop. A single lane roundabout would maintain the quality of traffic operations at this site but would provide improved traffic conditions for a projected design year of 2035. It is encouraged to use a minimum dimensions for this site in order to reduce the costs of land purchase and building materials. In addition, the distance between Site A and the correlating intersection of State Street and 2000 North was considered. It was estimated that the distance between the two intersections would not cause a decrease in LOS for Site A.

At Site B, the design team recommends that a single lane roundabout be used in contrast to the other roundabout types. A single lane roundabout would provide an improved LOS for the design year of 2035 for this intersection. It is recommended by the design team that a minimum set of dimensions be used for this site. The use of larger dimensions as outlined previously will result in higher costs for the city.

Lastly, it is recommended that Site C be converted from a two way stop intersection to a single lane roundabout. A single lane roundabout would provide an improved LOS for the projected design year of 2035 . The design team recommends the use of minimum dimensions to reduce the costs of land purchase and movement of utilities.

In summary, the replacement of the three intersections and the construction of three roundabouts are encouraged by the design team. Orem City desires to increase the flow of 800

West and it is determined that the single lane roundabouts at each site would improve the overall flow of the road.

WORKS CITED

Fricker, J. D., \& Whitford, R. K. (2004). Fundamentals of Transportation Engineering: A multimodal systems approach. Upper Saddle River, New Jersey, United States of America: Pearson Education, Inc.

NCHRP. (2010). Report 672 Roundabouts: An Informational Guide. Washington, D.C.: Transportation Research Board.

APPENDIX A: TURNING MOVEMENTS

INTERSECTION TURNING MOVEMENTS

2000 North 800 West
Thursday, January 15, 2015
7:30-9:00: AM Count

TIME PERIOD		EASTBOUND			SOUTHBOUND			WESTBOUND			NORTHBOUND			TOTAL	
BEGIN	END	LEFT	THRU	RIGHT	15 MIN	SUM									
7:30	7:45	2	23	3	7	3	0	0	33	10	17	2	0	100	100
7:45	8:00	0	32	0	12	8	1	0	53	11	19	8	8	152	252
8:00	8:15	3	23	0	10	6	0	0	44	5	10	8	3	112	364
8:15	8:30	2	25	3	5	7	0	0	21	6	5	3	5	82	446
8:30	8:45	1	27	1	9	8	0	0	28	9	9	2	2	96	542
8:45	9:00	0	32	2	11	13	0	0	22	7	16	5	3	111	653

SUM	8	162	9	54	45	1	0	201	48	76	28	21
PERCENT	1%	25%	1%	8%	7%	0%	0%	31%	7%	12%	4%	3%
TOTAL	179						100					249

Peak Hour Volume Statistics

$$
800 \text { West }
$$

152

West Leg Volume 268

60

PEAK TRAFFIC VOLUME

PEAK TRAFFIC VOLUME											
EASTBOUND			SOUTHBOUND			WESTBOUND			NORTHBOUND		
LEFT	THRU	RIGHT									
7	103	6	34	24	1	0	151	32	51	21	16
116			59			183			88		
Peal Hour		7:30-8:30		Pealk Volume		446		Peak Hour Factor			0.73

INTERSECTION TURNING MOVEMENTS

2000 North 800 West

Thursday, January 15, 2015
4:30-6:00: PM Count

TIME PERIOD		EASTBOUND			SOUTHBOUND			WESTBOUND			NORTHBOUND			TOTAL	
BEGIN	END	LEFT	THRU	RIGHT	15 MIN	SUM									
4:30	4:45	4	44	4	14	11	0	0	32	10	17	5	7	148	148
4:45	5:00	3	45	2	10	11	2	0	29	5	13	4	5	129	277
5:00	5:15	4	53	0	10	14	0	1	31	13	8	5	5	144	421
5:15	5:30	5	59	3	6	9	0	0	20	9	15	4	1	131	552
5:30	5:45	6	75	1	5	8	0	0	26	10	13	3	6	153	705
5:45	6:00	4	42	2	4	12	0	0	48	7	18	6	7	150	855

SUM	$\mathbf{2 6}$	318	$\mathbf{1 2}$	$\mathbf{4 9}$	65	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1 8 6}$	$\mathbf{5 4}$	84	$\mathbf{2 7}$	31	
PERCENT	3%	37%	1%	6%	8%	0%	0%	22%	6%	10%	3%	4%	
TOTAL	356				116				241		142		

INTERSECTION TURNING MOVEMENTS

INTERSECTION TURNING MOVEMENTS

400 South 800 West

Tuesday, January 20, 2015
4:30-6:00: PM Count

TIME PERIOD		EASTBOUND			SOUTHBOUND			WESTBOUND			NORTHBOUND			TOTAL	
BEGIN	END	LEFT	THRU	RIGHT	15 MIN	SUM									
4:30	4:45	6	70	5	10	13	10	3	40	2	4	11	0	174	174
4:45	5:00	2	58	6	16	20	16	21	56	2	6	10	5	218	392
5:00	5:15	4	84	5	12	24	9	8	60	2	3	16	4	231	623
5:15	5:30	4	92	7	7	21	14	22	64	6	9	15	2	263	886
5:30	5:45	2	81	6	11	20	15	15	63	12	4	10	2	241	1127
5:45	6:00	5	67	6	13	20	13	13	48	1	4	10	6	206	1333

SUM	23	$\mathbf{4 5 2}$	35	69	118	77	82	331	$\mathbf{2 5}$	30	72	19	
PERCENT	2%	34%	3%	5%	9%	6%	6%	$\mathbf{2 5} \%$	2%	2%	5%	1%	
TOTAL	510			264				438				121	

Peak Hour Volume Statistics

175

PEAK TRAFFIC VOLUME

PEAK TRAFFIC VOLUME											
EASTBOUND			SOUTHBOUND			WESTBOUND			NORTHBOUND		
LEFT	THRU	RIGHT									
12	315	24	46	85	54	66	243	22	22	51	13
	351			185			331			86	
Peal	Hour	4:45-5:45 PM		Pealk Volume		953		Peak Hour Factor			0.90589

APPENDIX B: SYNCHRO ANALYSIS

Lanes, Volumes, Timings
1: 800 W \& 400 S
1/31/2015

| | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

AM Peak with Roundabout

Lanes, Volumes, Timings

Existing AM Peak

Lanes, Volumes, Timings
1: $800 \mathrm{~W} \& 400 \mathrm{~S}$

PM Peak with Roundabout

Lanes, Volumes, Timings
1: 800 W \& 400 S

Existing PM Peak

Lanes, Volumes, Timings
1: 800 W \& 1000 N
1/31/2015

AM Peak with Roundabout

Lanes, Volumes, Timings
$1: 800 \mathrm{~W} \& 1000 \mathrm{~N} \quad 1 / 31 / 2015$

Existing AM Peak

Lanes, Volumes, Timings
1: $800 \mathrm{~W} \& 1000 \mathrm{~N}$
1/31/2015

MID Peak with Roundabout

Lanes, Volumes, Timings

1/31/2015												
	\rangle		7	7			4	\uparrow	p		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			${ }_{\text {¢ }}$		7	\uparrow	F	\%	\uparrow	F
Volume (vph)	12	14	3	15	13	30	42	94	8	,	115	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	185		300	180		300
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.988			0.930				0.850			0.850
Flt Protected		0.979			0.987		0.950			0.950		
Satd. Flow (prot)	0	1802	0	0	1710	0	1770	1863	1583	1770	1863	1583
Flt Permitted		0.979			0.987		0.950			0.950		
Satd. Flow (perm)	0	1802	0	0	1710	0	1770	1863	1583	1770	1863	1583
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		255			315			267			250	
Travel Time (s)		5.8			7.2			6.1			5.7	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	14	16	3	17	15	34	48	108	9	5	132	9
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	33	0	0	66	0	48	108	9	5	132	9
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Tum Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Area Type: Other												
Control Type: Unsignalized												
Intersection Capacity Utilization 20.0\% ICU Level of Service A												
Analysis Period (min) 15												

Existing MID Peak

Lanes, Volumes, Timings
1: $800 \mathrm{~W} \& 1000 \mathrm{~N}$ 1/31/2015

	y	\rightarrow		\checkmark		4	4	\uparrow	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			${ }_{*}$			\uparrow			\uparrow	
Volume (vph)	18	30	1	11	23	36	73	179	19	5	154	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	185		300	180		300
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.997			0.930			0.990			0.995	
Flt Protected		0.982			0.993			0.987			0.999	
Satd. Flow (prot)	0	1824	0	0	1720	0	0	1820	0	0	1852	0
Flt Permitted		0.982			0.993			0.987			0.999	
Satd. Flow (perm)	0	1824	0	0	1720	0	0	1820	0	0	1852	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		255			315			267			250	
Travel Time (s)		5.8			7.2			6.1			5.7	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	19	31	1	11	24	38	76	186	20	5	160	7
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	51	0	0	73	0	0	282	0	0	172	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Tum Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Yield			Yield			Yield			Yield	

Intersection Summary
Area Type: Other
Control Type: Roundabout
Intersection Capacity Utilization 38.7\% ICU Level of Service A
Analysis Period (min) 15

PM Peak with Roundabout

Lanes, Volumes, Timings
1: $800 \mathrm{~W} \& 1000 \mathrm{~N}$
1/31/2015

| | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Existing PM Peak

Lanes, Volumes, Timings
1: $800 \mathrm{~W} \& 2000 \mathrm{~N}$
1/31/2015

	\rangle			7	\longleftarrow	4	4	\uparrow	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢			${ }_{\$}$	
Volume (vph)	7	103	6	0	151	32	51	21	16	34	24	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.993			0.976			0.975			0.998	
Flt Protected		0.997						0.972			0.972	
Satd. Flow (prot)	0	1844	0	0	1818	0	0	1765	0	0	1807	0
Flt Permitted		0.997						0.972			0.972	
Satd. Flow (perm)	0	1844	0	0	1818	0	0	1765	0	0	1807	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		273			343			250			270	
Travel Time (s)		6.2			7.8			5.7			6.1	
Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Adj. Flow (vph)	10	141	8	0	207	44	70	29	22	47	33	1
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	159	0	0	251	0	0	121	0	0	81	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Tum Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Yield			Yield			Yield			Yield	

Intersection Summary
Area Type: Other
Control Type: Roundabout
Intersection Capacity Utilization 24.2\% ICU Level of Service A
Analysis Period (min) 15

AM Peak with Roundabout

Lanes, Volumes, Timings
1: $800 \mathrm{~W} \& 2000 \mathrm{~N} \quad 1 / 31 / 2015$

| | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Existing AM Peak

Lanes, Volumes, Timings
1: $800 \mathrm{~W} \& 2000 \mathrm{~N}$

| | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

MID Peak with Roundabout

Lanes, Volumes, Timings

Existing MID Peak

Lanes, Volumes, Timings
1: $800 \mathrm{~W} \& 2000 \mathrm{~N}$
1/31/2015

PM Peak with Roundabout

Lanes, Volumes, Timings
1: $800 \mathrm{~W} \& 2000 \mathrm{~N}$

Existing PM Peak

APPENDIX C: DEMANDS AND CAPACITY

